Midterm 1: Math 20D Midterm Exam 04/26/2023 Instructor: Finley McGlade

You have 50 minutes.

You are permitted the use of a scientific calculator and a double sided page of handwritten notes.

UNLESS THE QUESTION SPECIFICALLY SAYS OTHERWISE YOU MUST SHOW ALL YOUR WORKING.

Name _____

PID _____

"I have adhered to UCSD policies on academic integrity while completing this examination."

Signature _____

The exams consists of 8 pages (including the cover page) with four questions. The maximum possible score is 30+30+30+40=130 points. The first thing you should do when writing time begins is CHECK to make sure you have all 8 of the pages.

Good luck!

THIS PAGE INTENTIONALLY LEFT BLANK

Problem 1. (30 points) Answer the question below by either writing TRUE or FALSE. No further justification is required. In parts (a) and (b) we make reference to the differential equation

$$\frac{dy}{dx} = 1 - xy \tag{1}$$

(a) (6 points) True or False. Equation (1) is a linear differential equation.

(b) (6 points) True or False. Equation (1) is a separable differential equation.

(c) (6 points) True or False. The expression $x^2 + y^2 = 8$ defines an implicit solution to $\frac{dy}{dx} = \frac{x}{y}$

(d) (6 points) True or False. An integrating factor for the equation

$$\sin(x)y'(x) + 2\cos(x)y = \frac{1}{\sin(x)}e^x.$$

is given by $\mu(x) = \sin^2(x)$.

(e) (6 points) True or False. The functions

$$y_1(t) = \frac{1}{2}(e^t + e^{-t})$$
 and $y_2(t) = \frac{1}{2}(e^t - e^{-t})$

are linearly dependent on the domain \mathbb{R} .

Problem 2. (30 points)

(a) (15 points) Solve the initial value problem

$$\frac{dy}{dx} = (1 - y)\cos(x), \qquad y(\pi/2) = 0.$$

(b) (15 points) Does the differential equation in (a) have a solution satisfying y(0) = 1. Justify your response.

Problem 3. (30 points)

(a) (15 points) Find constants α , β , C_1 , and C_2 such that the initial value problem

y'' - 4y' + 5y = 0, y(0) = 1/2, y'(0) = -1/2

admits a solution of the form $y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t)$.

(b) (15 points) Rewrite your solution to (a) in form

$$y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$$

where A > 0 and $\phi \in [0, 2\pi)$ are constants.

Problem 4. (40 points) At 3:00pm a bottle of wine at $10^{\circ}C$ is placed in an air-conditioned room. Define T(t) to be temperature of the bottle of wine t minutes after 3:00pm and let M(t) denote the temperature of the air-conditioned room t minutes after 3:00pm.

Newton's law of cooling predicts the existence of a **constant** k > 0 such that the following differential equation is satisfied

$$\frac{dT}{dt} = k(M(t) - T(t)).$$

(a) (20 points) From 3:00pm to 3:20pm the air-conditioning is working and the room is a constant temperature of 23°C. If the wine reachs 15°C at exactly 3:10pm use Newton's law of cooling to predict the temperature of the wine at 3:20pm. Express your answer to the nearest 0.01°C.

(b) (20 points) At 3:20pm the air-conditioning unit in the room loses power. As a result, the temperature of the room changes in such a way that t minutes after 3:00pm, the temperature of the room is given in degrees celsius according to the function

$$M(t) = \begin{cases} 23, & 0 \le t < 20, \\ 38 + (23 - 38)e^{-0.05(t - 20)}, & t \ge 20. \end{cases}$$

Still assuming that the wine reaches $15^{\circ}C$ at exactly 3:10pm, use Newton's law of cooling to predict the temperature of the wine at 3:50pm. Express your answer to the nearest $0.01^{\circ}C$.

Scratch Working Page